0 L "INl I a2) T B W

SOFTWARE
ENGINEERING

Modern Approaches Second Edition

A\~ AU M) G
Y LN ﬁ
L,

| W\ £ v
: \ ‘
. 3 \ - - (‘

Eric J. Braude
Michael E. Bernstein

AU VL T s - e A v

7800 (™ " Y a0 T —a\ O A A

SOFTWARE
ENGINEERING

Modern Approaches Second Edition

Eric J. Braude

Boston University, Metropolitan College

Michael E. Bernstein

Boston University, Metropolitan College

"WAVELAND

— e e

_PRESS, INC,)

Long Grove, Illinois

For information about this book, contact:
Waveland Press, Inc.
4180 IL Route 83, Suite 101
Long Crove, IL 60047-9580
(847) 634-0081
info@waveland.com
www.waveland.com

Copyright © 2011 by Eric J. Braude and Michael E. Bernstein
Reissued 2016 by Waveland Press, Inc.

10-digit ISBN 1-4786-3230-5
13-digit [SBN 978-1-4786-3230-6

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without permission in writing from the publisher.

Printed in the United States of America

7 6 5 4 3 2 1

For Judy (Eric J. Braude)
To Bambi, Garrett and Reid,
for all their love and support (Michael E. Bernstein)

Brief Contents

Preface xiv
Acknowledgments xvii

Part | Introduction to Software 1

The Goals and Terminology of Software Engineering 1
Engineering

2 Introduction to Quality and Metrics in Software
Engineering 21

Part II Software Process Software Process 32

Agile Software Processes 63
Quality in the Software Process 80

Partlll Project Management

3

4

5

6 Software Configuration Management 120

7 Principles of Software Project Management | 140
8

Principles of Software Project Management Il 168
9 Quality and Metrics in Project Management 213
PartIV Requirement Analysis 10 Principles of Requirements Analysis 230

11 Analyzing High-Level Requirements 245

12 Analyzing Detailed Requirements 278

13 Quality and Metrics in Requirements Analysis 331

14 Formal and Emerging Methods in Requirements Analysis
(Online chapter) 349

Part V. Software Design 15 Principles of Software Design 350

16 The Unified Modeling Language 361

17 Software Design Patterns 383

18 Software Architecture 438

19 Detailed Design 476

20 Design Quality and Metrics 508

21 Advanced and Emerging Methods in Software Design
(Online chapter) 538

Part VI Implementation 22 Principles of Implementation 539

23 Quality and Metrics in Implementation 584
24 Refactoring 601

Part VI Testing and 25 Introduction to Software Testing 621
Maintenance 26 Unit Testing 630
27 Module and Integration Testing 666
28 Testing at the System Level 694
29 Software Maintenance 730

Glossary 759
Index 767

Contents

Preface Xiv
The Issue of Scale Xiv
This Edition Compared with the First Xiv
How Instructors Can Use This Book XV
Acknowledgments xvii

PART I Introduction to Software Engineering

1 The Goals and Terminology of Software Engineering 1
1.1 What is Software Engineering 2
1.2 Why Software Engineering Is Critical: Software Disasters 3
1.3 Why Software Fails or Succeeds 4
1.4 Software Engineering Activities 5
1.5 Software Engineering Principles 10
1.6 Ethics in Software Engineering 12
1.7 Case Studies 14
1.8 Summary 19
1.9 Exercises 19

Bibliography 20

2 Introduction to Quality and Metrics in Software Engineering 21
2.1 The Meaning of Software Quality 22
2.2 Defects in Software 23
2.3 Verification and Validation 25
2.4 Planning for Quality 27
2.5 MELrics 28
2.6 SUMMary 30
2.7 Exercises 31

Bibliography 31

PART Il Software Process

3 Software Process 32
3.1 The Activities of Software Process 33
32 Software Process Models 37

3.3 Case Study: Student Team Guidance 55

vi CONTENTS

3.4 Summary ..., 59
3.5 Exercises 60
Bibliography 62

4 Agile Software Processes 63
4.1 Agile History and Agile Manifesto, 64
42 Agile Principles 65
43 Agile Methods 66
4.4 Agile Processes 68
45 Integrating Agile with Non-Agile Processes 74
4.6 SUMMaAry 77
4.7 EXercises 78
Bibliography 79

5 Quality in the Software Process, 80
5.1 Principles of Managing Quality 81
5.2 Managing Quality in Agile Processes 82
5.3 Quality Planning 83
5.4 Inspections 87
55 QA Reviews and Audits 92
5.6 Defect Management, 93
5.7 Process Improvement and Process Metrics 96
5.8 Organization-Level Quality and the CMMI 100
59 Case Study: Software Quality Assurance Plan for Encounter 103
510 Summary ... 118
501 EXErcises 118
Bibliography 119

6 Software Configuration Management, ... 120
6.1 Software Configuration Management Goals 121
62 SCM Activities 121
6.3 Configuration Management Plans 128
6.4 Configuration Management Systems 128
6.5 Case Study: Encounter Video Game 129
6.6 Case Study: Eclipse 134
6.7 Student Team Guidance: Configuration Management 136
6.8 Summary 137
6.9 EXEICISes oo 138
Bibliography 139

PART Il Project Management

7 Principles of Software Project Management I: Organization, Tools, and Risk Management . . 140
7.1 Software Project Organization 142
7.2 Team Size 144
7.3 Geographically Distributed Development 146
7.4 The Team Software Process 151
7.5 Software Project Tools and Techniques 153

7.6 Risk Management
7.7 Student Team Guidance: Organizing the Software Project's Management
7.8 Summary ...
7.9 Exercises

Bibliography

8 Principles of Software Project Management Il: Estimation, Scheduling, and Planning

8.1 Cost Estimation
8.2 Scheduling
8.3 The Software Project Management Plan
8.4 Case Study: Encounter Project Management Plan
8.5 Case Study: Project Management in Eclipse
8.6 Case Study: Project Management for OpenOffice
8.7 Case Study: Student Team Guidance
8.8 Summary
8.9 EXErCises
Bibliography

9 Quality and Metrics in Project Management
9.1 Cultivating and Planning Internal Quality
9.2 Project Metrics
9.3 Using Metrics for Improvement
9.4 Software Verification and Validation Plan

9.5 Case Study: Software Verification and Validation Plan for Encounter
9.6 Summary

9.7 Exercises

PART IV Requirement Analysis

10 Principles of Requirements Analysis
10.1 The Value of Requirements Analysis
10.2 Sources of Requirements
10.3 High-level vs. Detailed Requirements
10.4 Types of Requirements
10.5 Nonfunctional Requirements
10.6 Documenting Requirements

10.7 Traceability
10.8 Agile Methods and Requirements
10.9 Updating the Project to Reflect Requirements Analysis

10.10 Summary
10.11 Exercises

11 Analyzing High-Level Requirements
11.1 Examples of Customer Wants

11.2 Stakeholder Vision

Bibliography

11.3 The Interview and Documentation Process

CONTENTS

vii

viii CONTENTS

11.4 Writing an Overview e 249
11.5 Describing Main Functions and Use Cases 249
11.6 Agile Methods for High-Level Requirements R 252
11.7 Specifying User Interfaces: High Level 254
11.8 Security Requirements 258
11.9 Using Diagrams for High-Level Requirement 260
11.10 Case Study: High-Level Software Requirements Specification
(SRS) for the Encounter Video Game 264
11.11 Case Study: High-Level Requirements for Eclipse 268
11.12 Eclipse Platform Subproject (First of three) 269
11.13 Case Study: High-Level Requirements for OpenOffice 273
T1L14 Summary 275
11,15 Exercises 275
Bibliography 276
12 Analyzing Detailed Requirements 278
12.1 The Meaning of Detailed Requirements 279
12.2 Organizing Detailed Requirements 280
12.3 User Interfaces: Detailed Requirements 291
12.4 Detailed Security Requirements 296
12.5 Error Conditions 296
12.6 Traceability of Detailed Requirements 297
12.7 Using Detailed Requirements to Manage Projects 300
12.8 Prioritizing Requirements 301
12.9 Associating Requirements with Tests 302
12.10 Agile Methods for Detailed Requirements 303
12.11 Using Tools and the Web for Requirements Analysis 305
12.12 The Effects on Projects of the Detailed Requirements Process 308
12.13 Student Project Guide: Requirements for the Encounter Case Study 309
12.14 Case Study: Detailed Requirements for the Encounter Video Game 315
12,15 Summary 328
12.16 Exercises 329
Bibliography 330
13 Quality and Metrics in Requirements Analysis 331
13.1 Quality of Requirements for Agile Projects 332
13.2 Accessibility of Requirements 332
13.3 Comprehensiveness of Requirements 333
13.4 Understandability of Requirements 335
13.5 Unambiguity of Requirements 335
13.6 Consistency of Requirements 336
13.7 Prioritization of Requirements 337
13.8 Security and High-Level Requirements 338
13.9 Self-Completeness of Requirements 339
13.10 Testability of Requirements 340
13.11 Traceability of Requirements 342

13.12 Metrics for Requirements Analysis 343

CONTENTS
13.13 Inspecting Detailed Requirements 344
13.14 SUMmMary 347
13.15 EXErCiSes o 348
14 Formal and Emerging Methods in Requirements Analysis: An Introduction
(Online Chapter) 349
14.1 Provable Requirements Method
14.2 Introduction to Formal Methods
14.3 Mathematical Preliminaries
14.4 The Z-Specification Language
14.5 The B Language System
14.6 Trade-offs for Using a B-like system
14.7 Summary
14.8 Exercises
Bibliography
PART V Software Design
15 Principles of Software Design 350
15.1 The Goals of Software Design 351
15.2 Integrating Design Models 354
15.3 Frameworks 357
15.4 IEEE Standards for Expressing Designs 359
155 Summary 359
15.6 EXErcises 360
16 The Unified Modeling Language 361
16.1 Classes in UML 362
16.2 Class Relationships in UML 362
16.3 Multiplicity 364
16.4 Inheritance 364
16.5 Sequence Diagrams 368
16.6 State Diagrams 372
16.7 Activity Diagrams 374
16.8 Data Flow Models 376
169 A Design Example with UML 377
16.10 Summary 380
16.11 Exercises 381
Bibliography 382
17 Software Design Patterns 383
17.1 Examples of a Recurring Design Purpose 384
17.2 An Introduction to Design Patterns 386
17.3 Summary of Design Patterns by Type: Creational,
Structural, and Behavioral 390
17.4 Characteristics of Design Patterns: Viewpoints, Roles, and Levels 396
17.5 Selected Creational Design Patterns 400
17.6 Selected Structural Design Patterns 408

X

CONTENTS

17.7 Selected Behavioral Design Patterns
17.8 Design Pattern Forms: Delegation and Recursion
17.9 Summary
17.10 EXErcises
Bibliography
18 Software Architecture
18.1 A Categorization of Architectures
18.2 Software Architecture Alternatives and Their Class Models
18.3 Trading Off Architecture Alternatives
18.4 Tools for Architectures
18.5 IEEE Standards for Expressing Designs
18.6 Effects of Architecture Selection on the Project Plan
18.7 Case Study: Preparing to Design Encounter (Student Project Guide continued)
18.8 Case Study: Software Design Document for the Role-Playing Video Game Framework
18.9 Case Study: Software Design Document for Encounter (Uses the Framework)
18.10 Case Study: Architecture of Eclipse
18.11 Case Study: OpenOffice Architecture
18.12 Summary
18.13 Exercises
Bibliography
19 Detailed Design
19.1 Relating Use Cases, Architecture, and Detailed Design
19.2 A Typical Road Map for the “Detailed Design” Process
19.3 Object-Oriented Design Principles
19.4 Designing against Interfaces
19.5 Specifying Classes, Functions, and Algorithms
19.6 Reusing Components
19.7 Sequence and Data Flow Diagrams for Detailed Design
19.8 Detailed Design and Agile Processes
19.9 Design in the Unified Development Process
19.10 IEEE Standard 890 for Detailed Design
19.11 Updating a Project with Detailed Design
19.12 Case Study: Detailed Design of Encounter
19.13 Case Study: Detailed Design of Eclipse
19.14 Summary
19.15 EXEICISEso
Bibliography
20 Design Quality and Metrics
20.1 Degree of Understandability, Cohesion, and Coupling
20.2 Degree of Sufficiency as a Quality Goal
20.3 Degree of Robustness as a Quality Goal
20.4 Degree of Flexibility as a Design Quality Goal
20.5 Degree of Reusability as a Design Quality Goal

20.6 Degree of Time Efficiency as a Design Quality Measure

CONTENTS

20.7 Degree of Space Efficiency as a Design Quality Measure

20.8 Degree of Reliability as a Design Quality Measure

20.9 Degree of Security as a Design Quality Measure
20.10 Assessing Quality in Architecture Selection
20.11 Assessing the Quality of Detailed Designs
20.12 SUMMArY
20.13 EXErcises

Bibliography

21 Advanced and Emerging Methods in Software Design (Online Chapter)
21.1 Designing in a Distributed Environment
21.2 Introduction to Aspect-Oriented Programming
21.3 Designing for Security with UMLsec
21.4 Model-Driven Architectures
21.5 The Formal Design Process in B
21.6 Summary
21.7 Exercises
Bibliography

PART VI Implementation

22 Principles of Implementation
22.1 Agile and Non-Agile Approaches to Implementation
22.2 Choosing a Programming Language
22.3 Identifying Classes
22.4 Defining Methods
22.5 Implementation Practices
22.6 Defensive Programming
22.7 Coding Standards
22.8 COMMENLSot
22.9 Tools and Environments for Programming
22.10 Case Study: Encounter Implementation
22.11 Case Study: Eclipse
22.12 Case Study: OpenOffice

22.13 Student Team Guidance for Implementation
22.14 SUMMArYot
22.15 Code Listings Referred to in this Chapter
22,16 Exercises

Bibliography

23 Quality and Metrics in Implementation
23.1 Quality of Implementation
232 Code Inspections and Related Quality Procedures
23.3 Summary
23.4 Exercises

Xi

Xii CONTENTS

24 Refactoring 601
24.1 Big Refactorings 604
242 Composing Methods 606
24.3 Moving Features between Objects 608
24.4 Organizing Data 609
24.5 Generalization 612
24.6 Introducing Modules 616
24.7 Refactoring in Projects 617
24.8 Summary 619
249 Exercises 619

Bibliography 620

PART VII Testing and Maintenance

25 Introduction to Software Testing 621
25.1 Testing Early and Often; and the Agile Connection 622
252 Retesting: Regression Testing o 622
25.3 Black Box and White Box Testing 623
25.4 Unit Testing vs. Post-Unit Testing 624
255 Testing Object-Oriented Implementations 625
25.6 Documenting Tests 626
25.7 Test Planning 626
25.8 Testing Test Suites by Fault Injection 628
259 Summary 628
25.10 Exercises 629

26 Unit Testing 630
26.1 The Sources of Units for Unit Testing 631
26.2 Unit Test Methods 631
26.3 Testing Methods 642
26.4 Test-Driven Development 647
26.5 Case Study: Encounter Video Game o 652
26.6 Summary 662
26.7 Exercises 663

Bibliography 665

27 Module and Integration Testing 666
27.1 Stubs and Drivers 667
272 Testing a Class 668
27.3 Integration 672
27.4 Daily Builds 679
27.5 Interface Testing 680
27.6 Module Integration 682
27.7 Case Study: Class Test for Encounter 683
27.8 Case Study: Encounter Integration Plan 688
27.9 Summary e 692
27.10 EXercises 692

Bibliography 693

CONTENTS

28 Testing at the System Level 694
28.1 Functional Testing 696
28.2 Nonfunctional Testing 698
28.3 Testing with Lightweight Requirements 708
28.4 Testing Shortly Before Release 713
28.5 Case Study: Encounter Software Test Documentation 714
28.6 Case Study: Eclipse 723
28.7 Case Study: OpenOffice 726
28.8 Summary 728
28.9 Exercises 728
Bibliography 729

29 Software Maintenance 730
29.1 Types of Software Maintenance, 731
29.2 lIssues of Software Maintenance, 734
29.3 Maintenance Process 736
29.4 [EEE Maintenance Standards 741
29.5 Software Evolution 749
29.6 Maintenance Metrics 751
29.7 Case Study 754
20.8 Summary ... 756
290.9 EXErCiSes 757
Bibliography 758

Glossary e 759
Index 767

xiii

Preface

Much of the modern world runs on software. As a result, software engineers are entrusted with significant
responsibility. Although it is a biomedical engineer, for example, who designs heal th monitoring systems, it is
a software engineer who creates its actual control functions. A marketing professional develops ways to reach
customers online but it is a software engineer who makes the system a reality.

Today's software engineer must be able to participate in more than one kind of software process, work in
agile teams, deal with customers, express requirements clearly, create modular designs, utilize legacy and
open source projects, monitor quality, incorporate security, and apply many types of tests.

THE ISSUE OF SCALE

A software application consists of tens, hundreds, even thousands of classes. This is very different from
managing three or four of them, and results in the dragon of complexity suggested by this book’s cover. As
also suggested there, however, this dragon can be subdued. Indeed, to deal with numerous and complex
classes, software engineers have at their disposal a wide variety of tools and techniques. These range from the
waterfall process to agile methodologies, from highly integrated tool suites to refactoring and loosely coupled
tool sets. Underlying this variety is continuing research into reliable approaches, and an acknowledgment of
the fact that one size does not fit all projects.

THIS EDITION COMPARED WITH THE FIRST

The first edition of this book emphasized the object-oriented approach, which has subsequently
become widespread. It was also designed to help student teams carry out hands-on term projects through
theory, examples, case studies, and practical steps. Object-orientation and hands-on continue to be major features
of this edition. However, we have widened the scope of the first edition, especially by including extensive
coverage of agile methods and refactoring, together with deeper coverage of quality and software design.
Readers of the first edition made extensive use of the complete video game case study—an example that
they could follow “from soup to nuts” but which was significantly more comprehensive than a toy. This edition
retains and updates that case study, but it adds the exploration of a simpler example on one hand (a DVD rental
store) and large, real, open source case studies on the other. In particular, to provide students a feeling for the
scope and complexity of real-world applications, this book leads them through selected requirements, design,
implementation, and maintenance of the Eclipse and OpenOffice open source projects. The size, complexity,
and transparency of these projects provide students a window into software engineering on a realistic scale.
Every book on software engineering faces a dilemma: how to reconcile the organization of the topics
with the organization of actual software project phases. An organization of chapters into process/project
management/requirements analysis/design/implementation/test/maintenance is straightforward but is liable
to be misinterpreted as promoting the waterfall development process at the expense others. Ourapproach has
been to use this organization in the seven parts of the book but to demonstrate throughout that each phase

PREFACE

typically belongs to a cycle rather than to a single waterfall sequence. In particular, our approach integrates
agile methodologies consistently.

This edition also introduces somewhat advanced influential ideas, including model-driven archi-
tectures and aspect-oriented programming. Nowadays, formal methods are mandated by government
agencies for the highest levels of security, and this book aims to educate readers in their possibilities. Due
to print space limitations, some of this material is to be found in the online extension of this book.

In summary, specific features of this edition compared with the first are as follows:

» A sharpening and standardization of the material from the first edition
e A strong agile thread throughout, including a chapter on agility alone and one devoted to refactoring.
¢ A separate chapter on quality in six of the book's seven parts
e Real-world case studies, taken from the Eclipse and OpenOffice open source projects
e Greatly expanded coverage of software design and design patterns
¢ New chapters on advanced, influential software engineering ideas
¢ An organization of many of the book’s seven parts as follows:
¢ Principles
* Details
e Quality
e Advanced Methods

HOW INSTRUCTORS CAN USE THIS BOOK

This book has been designed to accommodate multiple approaches to the learning and teaching of software
engineering. Most instructors teach the fundamentals of software process, project management, requirements
analysis, design, testing, implementation, and maintenance. Beyond this common ground, however,
instructors employ a wide variety of styles and emphases. The following are major approaches, together
with the sequence of chapters that support each of them.

A. Process emphasis, concentrating on how applications are developed
All of Parts | through 1V; and Chapters 15, 22, and 25 (the remaining principles and introduction
chapters)

B. Design emphasis, which teaches software engineering primarily as a design activity
Principles and introduction: Chapters 1, 3,7, and 10; all of Part V; and Chapters 22 and 25 (principles
and introduction)

C. Programming and agile emphasis, which emphasizes software engineering as a code-oriented activity that
satisfies requirements, emphasizing agile approaches
Principles and introduction: Chapters 1, 3, 7, 10, and 15; all of Part VI; and Chapters 25 and 26

D. Two-semester course, which enables the instructor to cover most topics and assign a substantial hands-on
project

Xv

Xvi

PREFACE

D1. All of the chapters in the book, either in sequence from beginning to end
or

D2. In two passes as follows:

(i) Principles and introduction chapters in the first semester: Chapters 1, 3, 7, 15, 22, and 25
(ii) The remaining chapters in the second semester

Empbasis on a bands-on projects and case studies, which relies mostly on an active team or individual project as
the vehicle for learning theory and principles

Principles and introduction chapters: Chapters 1, 3, 7, 15, 22, 25, and 26, and all case study sections in
the remaining chapters

Theory and principles emphasis, concentrating on what one can learn about software engineering and its
underpinnings

Principles and introduction chapters: Chapters 1, 2, 3, 7, 15, 22, and 25, followed, as time allows, by
Chapters 14 and 21 (emerging topics)

Qudlity assurance and testing empbasis

Principles and introduction: Chapters 1, 3, 7, and 10; Chapters 2, 5, 9, 13, 20, 23 (quality); and Chapters
25,26, 27, and 28 (testing).

The web site for this book, including review questions and the Encounter game case study, is

waveland.com/Extra_Material/32306/.

Eric Braude
Michael Bernstein
Boston, MA
January 2010

Acknowledgments

We owe a debt of gratitude to our students at Boston University's Metropolitan College. Working in myriad
industries and businesses, they have given us invaluable feedback. The College itself has provided a model place
for the teaching and learning of software engineering. Our thanks go to Dick Bostwick and Tom VanCourt,
much of whose work in the first edition carries over to this one. We are grateful to the people who worked with
us through the painstaking process of writing and publishing this book. We are particularly appreciative of the
help from oureditors, Dan Sayre and Jonathan Shipley; from Georgia King, Yee Lyn Song, and the indefatigable
staff. We thank the reviewers of our manuscript, whose feedback has been invaluable:

Arvin Agah, University of Kansas

Steven C. Shaffer, Pennsylvania State University
Stephen M. Thebaut, University of Florida

Aravinda P. Sistla, University of Illinois, Chicago
James P. Purtilo, University of Maryland

Linda M. Ott, Michigan Technological University
Jianwei Niu, University of Texas, San Antonio
William Lively, Texas A&«M University

Chung Lee, California State University, Pomona
Sudipto Ghosh, Colorado State University

Max | Fomitchev, Pennsylvania State University
Lawrence Bernstein, Stevens Institute of Technology
John Dalbey, California Polytechnic University

Len Fisk, California State University, Chico

Ahmed M. Salem, California State University, Sacramento
Fred Strauss, New York University

Kai H. Chang, Auburn University

Andre van der Hoek, University of California, Irvine
Saeed Monemi, California Polytechnic University
Robert M. Cubert, University of Florida

Chris Tseng, San Jose State University

Michael James Payne, Purdue University

Carol A. Wellington, Shippensburg University

Yifei Dong, University of Oklahoma

Peter Blanchfield, Nottingham University

Desmond Greer, Queen's University Belfast

WeiQi Yan, Queen's University Belfast

Zaigham Mahmood, Derby University

Karel Pieterson, Hogeschool Van Amsterdam

This book would not have been possible without the constant love, patience, and encouragement of our families.

The Goals and Terminology
of Software Engineering

Why is software engineering

e AZIDI important?
/— Maintenance
/ \ Who and what does is consist of?
T({astlng The Software What are its main activities?
l Development
\ Lifecycle Requirements \é\:\h?rt] artrai r:h?; principles of software
analysis gineering:
Implementation / What ethics are involved?
\\ . What sorts of case studies will be

- ;
Design used to illustrate the subject?

Figure 1.1 The context and learning goals for this chapter

The goal of software engineering, and the theme of this book, is the creation of software systems that
meet the needs of customers and are reliable, efficient, and maintainable. In addition, the system should be
produced in an economical fashion, meeting project schedules and budgets. This is no easy task, especially
for large, complex applications. This chapter introduces the field of software engineering and explains how
it addresses these goals. We first explain the term “software engineering,” showing that it consists of many
parts.

CHAPTER 1 THE GOALS AND TERMINOLOGY OF SOFTWARE ENGINEERING

1.1 WHAT IS SOFTWARE ENGINEERING?

Software engineering is an engineering discipline that involves all aspects of developing and maintaining a
software product. Engineering disciplines such as civil, mechanical, and electrical involve the design, analysis,
and construction of an artifact for some practical purpose. Software engineering is no exception to this—
software products certainly have practical purposes.

The IEEE defines Software Engineering [1] as follows:

1. The application of a systematic, disciplined, quantifiable approach to the development, operation and
maintenance of software; that is, the application of engineering to software.

2. The study of approaches as in (1).

As this definition suggests, it's not only what is produced that's important but also how it is produced.
Engineering disciplines employ an established set of systematic, disciplined, and quantifiable approaches to the
development of artifacts. By thoroughly applying an analogous set of approaches to the development of software,
we can expect the production of software that is highly reliable, is maintainable, and meets specified
requirements. A disciplined approach is particularly important as the size of a software project grows. With
increased size comes greatly increased complexity, and applying a systematic and disciplined approach is critical.

One of the first uses of the phrase “software engineering” was in 1968, by a NATO Study Group on
ComputerScience [2]. A conference was organized at that time, motivated by the “rapidly increasing importance
of computer systems in many activities of society.” The Study Group focused their attention on the problems
with software, and held a working conference on Software Engineering that turned out to see farinto the future.
The following are some quotes from the conference that summarize the cause for their concern:

The basic problem is that certain classes of systems are placing demands on us which are beyond
our capabilities and our theories and methods of design and production at this time . . . Itis large
systems that are encountering great difficulties. We should not expect the production of such
systems to be easy.

Particularly alarming is the seemingly unavoidable fallibility of large software, since a mal-
function in an advanced hardware-software system can be a matter of life and death.

Programming management will continue to deserve its current poor reputation for cost and schedule
effectiveness until such time as a more complete understanding of the program design process is achieved.

One of the problems that is central to the software production process is to identify the nature of
progress and to find some way of measuring it.

Today we tend to go on for years, with tremendous investments to find that the system, which was
not well understood to start with, does not work as anticipated. We build systems like the Wright
brothers built airplanes—build the whole thing, push it off the cliff, let it crash, and start over again.

The Study Group discussed possible techniquesand methods that might lead to solving these problems.
They deliberately and provocatively used the term “software engineering,” with an emphasis on engineering,
as they wanted to "imply the need for software manufacture to be based on the types of theoretical
foundations and practical disciplines that are traditional in the established branches of engineering.” They
believed that if these foundations and discipline were applied to building software systems, the quality of the
resulting systems would be vastly improved.

Today, many of the issues they identified are addressed by evolving software engineering techniques
and practices even as the scope of applications has increased dramatically. Throughout this book we examine
these practices and explain how they contribute to producing high-quality software. Before doing that,

WHY SOFTWARE ENGINEERING IS CRITICAL: SOFTWARE DISASTERS

however, it is instructive to begin examining why software fails in the first place, and how some failures can
even lead to catastrophic results.

1.2 WHY SOFTWARE ENGINEERING IS CRITICAL: SOFTWARE DISASTERS

Even with the best of intentions, a large number of software projects today are unsuccessful, with a large
percentage never completed. Worse, quite a few software projects still end in disaster, causing a loss of
money, time, and tragically, even lives. We review some representative samples here as cautionary tales. In all
cases, the methods employed were inadequate for the complexity of the required application. Failures such as
these motivate us to continually ask: How can we apply software engineering methodologies to ensure the
appropriate level of quality in software applications?

1.2.1 The Virtual Case File Project

The FBI's Virtual Case File system was intended to automate the FBI's cumbersome paper-based case system, allow
agents to share investigative information, and replace obsolete systems. Instead, after an expenditure of $170
million, the result did not accomplish these objectives at all. The effect has been to inhibit the FBI from growing its
crime-fighting mission despite the growth in terrorism and the increased sophistication of many criminal
organizations. All of 700,000 lines of code, costing $100 million, had to be abandoned. Poorly defined requirements,
networking plans, and software development plans were cited by investigators as causes for this disaster.

1.2.2 The Ariane Project

“On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in failure. Only about 40 seconds after initiation of

the flight sequence, at an altitude of about 3700 m, the launcher veered off its flight path, broke up and exploded."[3]

The cost of developing Ariane during the preceding decade has been estimated at $7 billion. A significant fraction of

this was wasted on June 4, 1996. Ariane 5 itself, including its specific development, has been valued at $500 million.
The source of the problem was described in the official report [3] as follows (italics added):

The internal Inertial Reference System software exception was caused during execution of a data
conversion from 64-bit floating point to 16-bit signed integer value. The floating-point number
which was converted had a value greater than what could be represented by a 16-bit signed
integer. This resulted in an Operand Error. The data conversion instructions (in Ada code) were
not protected from causing an Operand Error. . . . Theerror occurred in a part of the software that only
performs alignment of the strap-down inertial platform. This software module computes mean-
ingful results only before lift-off. As soon as the launcher lifts off, this function serves no purpose.

In other words, the data conversion code itself was “correct” but was called upon to execute when it should
not have been. The defect lay within controlling code. This kind of problem is easy to describe but not easy to
avoid because many people are involved in large projects. Large projects become extraordinarily complex.
Development efforts like Ariane call for extensive education and coordination within project management, quality
assurance, configuration management, architecture, detailed design, programming, and testing organizations.
Depending on how the project was organized and designed, any one of these organizations could have been
partly responsible for seeing to it that the code in question was not called after liftoff.

1.2.3 Radiation Overdose

As software controls an ever-increasing number of devices, its reliability is coming under increasingly intense
scrutiny. In the project management magazine Baseline, Debbie Gage, John McCormick, and Berta Ramona wrote

CHAPTER 1 THE GOALS AND TERMINOLOGY OF SOFTWARE ENGINEERING

of a lawsuit alleging “massive overdoses of gamma rays partly due to limitations of the computer program that

guided use of” a particular radiation-therapy machine. They reported the following: “The International Atomic

Energy Agency said in May 2001 that at least five of the deaths were probably from radiation poisoning (from the

machine) and at least 15 more patients risked developing 'serious complications' from radiation.” [4] The defect

did not show up until a significant time after release, and only after certain sequences of operator actions.
The following describes the software defect, and is quoted from [5].

Setting the bending magnets takes about 8 seconds. Magnet calls a subroutine called Ptime to
introduce a time delay. Since several magnets need to be set, Ptime is entered and exited several
times. A flag to indicate that bending magnets are being set is initialized upon entry to the Magnet
subroutine and cleared at the end of Ptime. Furthermore, Ptime checks a shared variable, set by the
keyboard handler, that indicates the presence of any editing requests. If there are edits, then Ptime
clears the bending magnet variable and exits to Magnet, which then exits to Datent. But the edit
change variable is checked by Ptime only if the bending magnet flag is set. Since Ptime clears it
during its first execution, any edits performed during each succeeding pass through Ptime will not
be recognized. Thus, an edit change of the mode or energy, although reflected on the operator's
screen and the mode/energy offset variable, will not be sensed by Datent so it can index the
appropriate calibration tables for the machine parameters.'

This is a fairly involved explanation but not at all beyond the complexity of many software systems in
existence today. When should this type of error have been found? If sound software engineering discipline
had been employed during all phases of the project, there would have been several opportunities in the
development process to detect it.

1.2.4 More Software Disasters

Readers who wish to know about more software disasters, big and small, are referred to Neumann [6], who discusses
risks, problems, defects, and disasters relating to reliability, safety, security vulnerabilities, integrity, and threats to
privacy and well-being. Another source is the ACM publication Software Engineering Notes and its Risks Forum [7].

1.3 WHY SOFTWARE FAILS OR SUCCEEDS

Thankfully, not all software projects end in the types of disasters described above, but far too many end in
failure. What does it mean for a software project to be unsuccessful? Simply put, an unsuccessful project is one
that fails to meet expectations. More specifically, the undesirable outcomes may include the following:

¢ Over budget

e Exceeds schedule and/or misses market window

* Doesn't meet stated customer requirements

e Lower quality than expected

¢ Performance doesn't meet expectations

e Too difficult to use

! Lé\)é:son, Naﬁcy, and Turnieir;CAS., “An Investigation of the Therac-25 Accidents,” IEEE Computer, Vol. 26, No. 7,
July 1993, pp. 18—41, copyright © 1993 IEEE.

SOFTWARE ENGINEERING ACTIVITIES

Failing to meet just one of these objectives can cause a project to be deemed unsuccessful. For example,
if a project is completed under budget, meets all requirements and functionality, has high quality, good
performance and is easy to use, it still may not be successful if the schedule was missed and no customers are
willing to purchase it as a result.

Charette [8] notes that there are many underlying reasons software projects are unsuccessful, including:
e Unrealistic or unarticulated project goals
* Poor project management
e Inaccurate estimates of needed resources
e Badly defined system requirements
» Poor reporting of the project's status
e Unmanaged risks
e Poor communication among customers, developers, and users

¢ Inability to handle the project's complexity
Other contributing factors are:

 Poor software design methodology

* Wrong or inefficient set of development tools
 Poor testing methodology

¢ Inadequate test coverage

« [nappropriate (or lack of) software process®

Unsuccessful software projects usually fall victim to several of these. To reiterate, the goal of software
engineering, and the theme of this book, is the creation of software systems that are reliable, efficient,
maintainable, and meet the needs of customers. Software engineering provides the tools and methodologies
necessary to accomplish these goals, resulting in the development of successful software systems.

We'll end this section on a positive note. The authors feel that software engineering has improved greatly,
when measured fairly. Projects of equal ambition can typically get done far more successfully now than 10 years
ago. The issue really is that the ambition and scope of applications have grown enormously. The Eclipse software
development platform, which this book uses as a case study, is an excellent example of a successful application.
This is largely due to its flexible design, inclusive requirements process, and thorough testing.

1.4 SOFTWARE ENGINEERING ACTIVITIES

The production of software systems can be extremely complex and present many challenges. Systems, especially
large ones, require the coordination of many people, called stakeholders, who must be organized into teams and
whose primary objective is to build a product that meets defined requirements. The entire effort must be organized

2 Charett, Rgl;e;t,i'\;(/gy Software Fails,” IEEE Spectrum, Vol. 42, No. 9, September 2005, pp. 42—-49, copyright ©
2005 IEEE.

6

CHAPTER 1 THE GOALS AND TERMINOLOGY OF SOFTWARE ENGINEERING

e People

* Project stakeholders.
¢ Product

e The software product plus associated documents.
¢ Project

¢ The activities carried out to produce the product.
¢ Process

¢ Framework within which the team carries out the activities necessary to build the product.

Figure 1.2 The four “P’'s” that constitute software engineering

into a cohesive project, with a solid plan for success. Finally, to successfully develop the product, the activities of
the people must be organized through use of an orderly and well-defined process. Collectively, these activities are
known as the 4 P's of software engineering: people, product, project, and process. Successful software projects
must adequately plan for and address all of them. Sometimes, the needs of each of the P's conflict with each other,
and a proper balance must be achieved for a project to be successful. Concentrating on one P without the others
can lead to a project’s failure. For example, if people are organized into efficient teams and given the resources
they need to perform their roles, a project can still be unsuccessful if there's no defined software process to follow,
as chaos can ensue. The 4 P's are summarized in Figure 1.2 and are discussed in the sections that follow.

1.4.1 People

People are the most important resource on a software project. It is through their efforts that software is
successfully constructed and delivered. Competent people must be recruited, trained, motivated, and
provided with a growth path, which is no easy task. They are the lifeblood of any successful project.
Software development is often dictated by tight, market-driven deadlines and demanding lists of required
product features. Because of this, only well-organized groups of engineers, educated and experienced in the
methods of software engineering, are capable of consistently carrying out these activities to everyone's
satisfaction. The alternative is often chaos and, all too frequently, disaster.

Typically, several groups of people are involved with and have a stake in a project's outcome. These are
called its stakebolders. They include business management, project management, the development team,
customers, and end users. Although each group is motivated to see the project succeed, given their diverse
roles each has a different perspective on the process. This is discussed next, for each of the groups cited.

Business Management

These are people responsible for the business side of the company developing the software. They include senior
management (e.g., V.P. Finance), marketing (e.g., Product Manager), and development managers. Their primary
focus is on business issues including profit, cost effectiveness, market competitiveness, and customer satisfaction.
They are typically not particularly knowledgeable about or involved in the technical aspects of the project.

Project Management

Project managers are responsible for planning and tracking a project. They are involved throughout,
managing the people, process, and activities. They continuously monitor progress and proactively implement
necessary changes and improvements to keep the project on schedule and within budget.

SOFTWARE ENGINEERING ACTIVITIES

Development Team

Software engineers are responsible for developing and maintaining the software. Software development
includes many tasks such as requirements gathering, software architecture and design, implementation,
testing, configuration management, and documentation. This book will have much to say about each of these
topics. Software engineers are motivated by many factors including technical innovation, low overhead (e.g.,
a minimum of business-type meetings), and having the time and support to stay involved in technology.

Customers

Customers are responsible for purchasing the software. They may or may not actually use the software.
Customers may be purchasing it for use by others in their organization. They are primarily interested in
software that is cost-effective, meets specific business needs, and is of high quality. They are typically
involved in some aspect of specifying requirements, and since they are paying for the project, they have the
ultimate say in defining the requirements.

End Users

End users are people who interact with and use software after it is finished being developed. End users are
motivated by software that's easy to use and helps them perform their jobs as efficiently as possible. For
example, once they become accustomed to and are effective using a particular user interface, they are
typically reluctant to accept major changes to it.

1.4.2 Product

The products of a software development effort consist of much more than the source and object code. They
also include project documentation (e.g., requirements document, design specification), test plans and results,
customer documentation (e.g., installation guide, command reference), and productivity measurements.
These products are often called artifacts, and are summarized in Figure 1.3. This book describes the complete
set of artifacts.

Part IIl, on software management, describes project metrics and how they are collected and used to
measure productivity.

¢ Project documentation
Documents produced during software definition and development.

e Code

Source and object.

e Test documents
Plans, cases, and results.

e Customer documents
Documents explaining how to use and operate product.

¢ Productivity measurements
Analyze project productivity.

Figure 1.3 The main product artifacts of a software project

CHAPTER 1 THE GOALS AND TERMINOLOGY OF SOFTWARE ENGINEERING

Part IV, on requirements analysis, explains how to produce requirements that specify what the product
is intended to be.

Part V explains how to specify software designs. Chapter 20 describes software architectures. Chapter
21 describes how to specify the detailed designs. Design patterns, a standard means of communicating
intelligently with each other about design, are described in Chapter 19.

Part VI discusses implementation (programming), emphasizing standards and precision. A major goal is
to help developers to write programs that are much easier to verify for correctness.

Part VII describes how to test the parts of an application, as well as the whole. It includes test procedures
that specify how tests are conducted and the test cases that specify the input data for tests. Part VII also
describes the types of customer documentation artifacts that are produced and their purpose.

1.4.3 Project

A software project defines the activities and associated results needed to produce a software product. Every
project involves a similar set of activities: planning, determining what's required, determining how the
software should be built to meet the requirements, implementing the software, testing the software, and
maintaining it once delivered to customers. These major project activities are summarized in Figure 1.4.

In addition to these activities, various development paradigms, techniques, and tools exist and are
employed on different projects. A development paradigm is a way of thinking about the process of producing
software.

An example of a development paradigm, and one that is in wide use today, is the object-oriented paradigm. It
was invented to make designs and code match the real world. That is, an object as represented in a software
design is patterned after a real-world object. For example, suppose that a banking application is to be built
that includes support for customers, bank accounts, and transactions on the accounts. In an object-oriented
paradigm, these real-word concepts are represented in the design and implementation by corresponding

¢ Planning

¢ Plan, monitor, and control the software project.
¢ Requirements analysis

¢ Define what to build.
¢ Design

¢ Describe how to build the software.
¢ Implementation

¢ Program the software.
¢ Testing

e Validate that software meets the requirements.
¢ Maintenance

e Resolve problems; adapt software to meet new requirements.

Figure 1.4 Major activities of a software project

SOFTWARE ENGINEERING ACTIVITIES

Real-world concepts
B #:0 =
|

Direct correspondence
]
A 4 ‘ y
Customer Transaction Account
object object object

Software design and implementation artifacts

Figure 1.5 A key role of the object-oriented paradigm

Source: Graphics reproduced with permission from Corel.

classes. This greatly facilitates identifying and applying modifications to a design necessitated by changes to
real-world requirements. For example, if the steps executed during a particular transaction need to change, the
design can more easily accommodate this since there's a corresponding transaction object in the design. The
design representation for transactions is encapsulated within the transaction object, and modifications can be
applied more easily. This is illustrated in Figure 1.5. In non-object-oriented languages, the representation of a
real-world concept such as a customer may be spread across many disconnected pieces of source code.

1.4.4 Process

A software process is a framework for carrying out the activities of a project in an organized and disciplined
manner. It imposes structure and helps guide the many people and activities in a coherent manner. A software
project progresses through different phases, each interrelated and bounded by time. A software process
expresses the interrelationship among the phases by defining their order and frequency, as well as defining the
deliverables of the project. Figure 1 names the major phases and indicates the order in which they are usually
performed.

Specific software process implementations are called software process models. There are several such models,
but most are based on either the waterfall or iterative development models. Each of these is briefly described below.
Part Il covers the evolution of software processes and details these plus several other of the most important
process models.

The waterfall process is the simplest software process model, and forms the basis for most others. A pure
waterfall process dictates that phases are implemented in sequence, with no phase starting before the previous
one has almost completed. That is, phases are executed in a strictly sequential order, usually with small
overlaps. Once a waterfall phase is finished it's deemed complete for the project and there is no need to return
to it. Variations of waterfall exist where already completed phases may be revisited and minor updates
applied, as a result of work done on subsequent phases. Waterfall begins with an inception phase, where the
product is conceived and business objectives defined. Next is the specification of the requirements, followed
by the design phase, the implementation phase, the testing phase, and finally the maintenance phase. Figure
1.6 illustrates the main phases and their sequence. This means that the process goes around the circle of
Figure 1.1 just once.

Software development rarely occurs in the strict waterfall sequence. Instead, it skips back and forth
somewhat among requirements, design, implementation, and testing. In practice, then, we often use iterative

9

